skip to main content


Search for: All records

Creators/Authors contains: "Segal-Halevi, Erel"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In fair division of indivisible goods, l-out-of-d maximin share (MMS) is the value that an agent can guarantee by partitioning the goods into d bundles and choosing the l least preferred bundles. Most existing works aim to guarantee to all agents a constant fraction of their 1-out-of-n MMS. But this guarantee is sensitive to small perturbation in agents' cardinal valuations. We consider a more robust approximation notion, which depends only on the agents' ordinal rankings of bundles. We prove the existence of l-out-of-floor((l+1/2)n) MMS allocations of goods for any integer l greater than or equal to 1, and present a polynomial-time algorithm that finds a 1-out-of-ceiling(3n/2) MMS allocation when l = 1. We further develop an algorithm that provides a weaker ordinal approximation to MMS for any l > 1. 
    more » « less
    Free, publicly-accessible full text available August 1, 2024
  2. In fair division of indivisible goods,  ℓ-out-of-d maximin share (MMS) is the value that an agent can guarantee by partitioning the goods into d bundles and choosing the ℓ least preferred bundles. Most existing works aim to guarantee to all agents a constant fraction of their 1-out-of-n MMS. But this guarantee is sensitive to small perturbation in agents' cardinal valuations. We consider a more robust approximation notion, which depends only on the agents' ordinal rankings of bundles. We prove the existence of ℓ-out-of-⌊(ℓ + 1/2)n⌋ MMS allocations of goods for any integer ℓ ≥ 1, and present a polynomial-time algorithm that finds a 1-out-of-⌈3n/2⌉ MMS allocation when ℓ=1. We further develop an algorithm that provides a weaker ordinal approximation to MMS for any ℓ > 1. 
    more » « less
  3. We study the problem of fairly allocating a set of m indivisible chores (items with non-positive value) to n agents. We consider the desirable fairness notion of 1-out-of-d maximin share (MMS)---the minimum value that an agent can guarantee by partitioning items into d bundles and receiving the least valued bundle---and focus on ordinal approximation of MMS that aims at finding the largest dłeq n for which 1-out-of-d MMS allocation exists. Our main contribution is a polynomial-time algorithm for 1-out-of-ł 2n/3 MMS allocation, and a proof of existence of 1-out-of-łfloor 3n/4 MMS allocation of chores. Furthermore, we show how to use recently-developed algorithms for bin-packing to approximate the latter bound up to a logarithmic factor in polynomial time. 
    more » « less
  4. We analyze the run-time complexity of computing allocations that are both fair and maximize the utilitarian social welfare, defined as the sum of agents’ utilities. We focus on two tractable fairness concepts: envy-freeness up to one item (EF1) and proportionality up to one item (PROP1). We consider two computational problems: (1) Among the utilitarian-maximal allocations, decide whether there exists one that is also fair; (2) among the fair allocations, compute one that maximizes the utilitarian welfare. We show that both problems are strongly NP-hard when the number of agents is variable, and remain NP-hard for a fixed number of agents greater than two. For the special case of two agents, we find that problem (1) is polynomial-time solvable, while problem (2) remains NP-hard. Finally, with a fixed number of agents, we design pseudopolynomial-time algorithms for both problems. We extend our results to the stronger fairness notions envy-freeness up to any item (EFx) and proportionality up to any item (PROPx). 
    more » « less